Introducing E3T

E3hubs, the largest incubation hub in South East Asia, is embarking on a grand blockchain project by creating a global digital economy platform that is powered by its native token, E3T. The platform will enable E3hubs entrepreneurs to perform all forms of economic activities that will create economic value that might rival the GDP of some countries.

E3T can be used in the following areas, but the list is not exhaustive.

E3T as An Internal Cryptocurrency of E3 Platform

E3T will be used as an internal cryptocurrency to pay for events, mentoring services, training courses. It is borderless because all the aforementioned transactions can happen on a global scale. For example, a coach can create an online mentoring service on E3 platform and members from any part of the world can pay for the service using E3T. Another example is a trainer can organize a webinar and members from any country can pay with E3T. Besides that, E3T can be used for E2C transactions and E2E transactions. It happened when members buy goods and services from physical outlets owned by members.

E3T as Payment for O2O Marketplace

E3T can be used as payment for the O2O marketplace. Members can buy things on the e-commerce marketplace and pay by COD mode via E3 mobile POS terminal.

E3 Global marketplace

E3 blockchain platform is not only minting tokens but also include a global E3 marketplace that allows members to trade digital and non-digital products and services and pay by E3T via E3 payment gateway. Transfer of asset ownership will be done based on smart contracts and it can be tracked and traced using E3T block explorer to avoid dispute.

Cross-border Money Transfer and Payment

E3 digital platform will facilitate cross-border money transfer and payment. Cross border money transfer can be conducted using E3T by reducing many intermediaries, thereby saving cost and time. We will make the cross-border money transfer seamless using E3 mobile POS app, just need to scan the QR code and pay. This will further enhance E2E trading among members of different countries。

E3 Dapps

By leveraging on the E3T PoA network, members can create all kinds of dApps using smart contracts and trade them on the E3T platform and transact using E3T. Besides, the E3T tech team will develop a dApps builder in the future so that members can create any dApp without having to learn how to code smart contracts. Therefore, the usage of E3T can be further enhanced through dApps creation and trading.

Sharing economy powered by E3T

Sharing business models such as Airbnb style office space sharing, ride-sharing, carpooling, etc all can be done using E3T.

E3T Tokenized asset trading platform

Expensive assets like property can be tokenized and sell on E3 tokenized platform using E3T as a medium of exchange.

Using E3T for P2P lending

A member can request a microloan in the form of E3T from another member on E3 P2P lending platform and approval of the loan can be executed based on the smart contract.

Using E3T for equity crowdfunding

E3hubs will set up an ECF platform by partnering some ECF players like FundedbyMe and CrowdPlus.Asia for members to raise funds via the platform using E3T. Matching is done automatically using the smart contract based on some terms and conditions.

E3T Multifunctional wallet

E3hubs will develop a multifunctional mobile wallet that comes in IOS and Android versions. It can perform the following functions:

  • Create an account(keys+address) and store them securely, transfer funds and make payment. Can accept different type of cryptocurrency or token
  • Token swap function
  • Market watch function
  • Friend get friend reward
  • Airdrop
  • Advertisement
  • Announcement

E3hubs is committed to making E3T one of the top utility tokens in the world and strive to build E3 into the world’s largest digital economy platform for entrepreneurs.

References

https://medium.com/@robin8/why-is-trading-digital-assets-via-blockchain-the-best-solution-6897db75faff

https://hackernoon.com/bitmark-how-to-use-the-blockchain-for-property-rights-ecf9f5e67e77

https://dappbuilder.io/builder

https://dgaming.com/media/what-is-poa-and-how-is-it-unique/

Storing Data on Blockchain

Though we are experiencing crypto winter at the moment, with major coins devalued more than 80% in 2018, the underlying blockchain technology is still exciting. The blockchain provides a democratized trust, distributed and validation protocol that has already disrupted banking and financial services and is on the verge of overhauling other industries like healthcare, supply chain, HR and more.

Despite the hype and its promising future, blockchain still has its shortcomings, the issue of data storage is one of them. The transactions based on the POW consensus for bitcoin, Ethereum, and other cryptocurrencies are extremely slow and therefore not suitable for storage of large data. For example, the deployment of dApp Cryptokitties nearly crippled the Ethereum network

The main problem of storing data on a blockchain is the limitation of the amount of data we can store because of its protocol and the high transaction costs. As a matter of fact, a block in blockchain can store data from a few kilobytes to maybe a few megabytes. For example, the block size of the Bitcoin is only 1Mb. The block size limitation has a serious impact on the scalability of most cryptocurrencies and the bitcoin community is debating whether to increase the block size.

Another issue is the high cost of the transactions. Why is storing data on the blockchain so expensive? It is because the data has to be stored by every full node on the blockchain network. When storing data on the blockchain, we do pay the base price for the transaction itself plus an amount per byte we want to store. If smart contracts are involved, we also pay for the execution time of the smart contract. This is why even storing kilobytes of data on the blockchain can cost you a fortune.

Therefore, it is not viable to store large data files like images and videos on the blockchain. Is there a possible solution to solve the storage issue? Yes, there are quite a few solutions but the most promising one is IPFS.

What is IPFS?

IPFS or Interplanetary File System is an innovative open-source project created by the developers at Protocol Labs. It is a peer-to-peer filesharing system that aims to change the way information is distributed across a wide area network. IPFS has innovated some communication protocols and distributed systems and combine them to produce a unique file-sharing system.

The current HTTP client-server protocol is location-based addressing which faces some serious drawbacks. First of all, location-based addressing consumes a huge amount of bandwidth, and thus costs us a lot of money and time. On top of that, HTTP downloads a file from a single server at a time, which can be slow if the file is big. In addition, it faces single-point of failure. If the webserver is down or being hacked, you will encounter 404 Not Found error. Besides that, it also allows for powerful entities like the governments to block access to certain locations.

On the other hand, IPFS is a content-based addressing system. It is a decentralized way of storing files, similar to BitTorrent. In the IPFS network, every node stores a collection of hashed files. The user can refer to the files by their hashes. The process of storing a file on IPFS is by uploading the file to IPFS, store the file in the working directory, generate a hash for the file and his file will be available on the IPFS network. A user who wants to retrieve any of those files simply needs to call the hash of the file he or she wants. IPFS then search all the nodes in the network and deliver the file to the user when it is found.

IPFS will overcome the aforementioned HTTP weaknesses. As files are stored on the decentralized IPFS network, if a node is down, the files are still available on other nodes, therefore there is no single point of failure. Data transfer will be cheaper and faster as you can get the files from the nearest node. On top of that, it is almost impossible for the powerful entities to block access to the files as the network is decentralized.

The following figure shows the difference between the centralized client-server protocol(HTTP) and the peer-to-peer IPFS protocol.


 [Source: https://www.maxcdn.com/one/visual-glossary/interplanetary-file-system/]

Blockchain and IPFS

IPFS is the perfect match for the blockchain. As I have mentioned, the blockchain is inefficient in storing large amounts of data in a block because all the hashes need to be calculated and verified to preserve the integrity of the blockchain. Therefore, instead of storing data on the blockchain, we simply store the hash of the IPFS file. In this way, we only need to store a small amount of data that is required on the blockchain but get to enjoy the file storage and decentralized peer-to-peer properties of IPFS.

One of the real-world use cases of blockchain and IPFS is Nebulis. It is a new project exploring the concept of a distributed DNS that supposedly never fails under an overwhelming access request. Nebulis uses the Ethereum blockchain and the Interplanetary Filesystem (IPFS), a distributed alternative to HTTP, to register and resolve domain names. We shall see more integration of Blockchain and IPFS in the future.

References

A Wrap-up of Blockchain And Cryptocurrency Conference 2018

I am trying to summarize a bit of the Blockchain and Cryptocurrency conference 2018 (from 13th to 15th Nov 2018) but it is far from comprehensive as I missed out the first day programmes. Besides that, I  couldn’t capture all the mind-boggling stuff delivered by the elite speakers, all of them are crypto experts! I am sure all the participants benefited immensely in one way or another unless they slept   through the sessions.

The conference was co-organized by Twinintel, QF4 Tech Asia and Blueshare. The venue was at the impressive five-star Sheraton Imperial Hotel located at Jalan Sultan Ismail, Kuala Lumpur. The event was very well organized and the speakers’ line-up is simply overwhelming, kudos to the organizers!

The topics were very comprehensive and catered for everyone needs, be them crypto investors, tech-savvy nerds, govt officials, regulators(maybe hiding among us), academicians, and students etc.  I would say there were not much marketing hypes about ICO, mostly educational.  The topics covered ICO, ISTO, Crypto analytics, Blockchain training, Blockchain standards, Blockchain smart cities , fundamentals and more.

I was particularly impressed by the cool topic “Predicting Cryptocurrency Exchange Rate with AI and social media” delivered by Dr.Tim Frey.  I like forecasting the future as it is my personal interest , that was why I watched all the back to future and time machine movies. I learned how Dr.Tim used Twitter’ tweets (or rather gossips) as the data for his forecasting model, which gives an impressive level of 70%-90% accuracy. Maybe One day we can develop a forecasting model that can deliver 99% accuracy.  I believe by using AI machine learning we can achieve that goal. I managed to catch up with Dr.Tim at tea time to get more insights from him. According to him, it seemed 90% of the audience couldn’t grasp the concepts, I am not too sure. I myself don’t understand much too. For example,  I don’t know what the heck is Kappa Architecture, I am sure our computer science experts can understand better.

Dr.Sindhu illustration of Crypto banking was an eye-opener.  I like the diagram that showed clearly how various components from KYC, front-end app, ledger, and the blockchain’s bank wallet are connected to the bank’s backend. It showcases a banking model for the future crypto transaction. we also learned about the Microsoft, Ethereum and R3 11 banks experiment on simulation an exchange of value on the blockchain. The banks involved were HSBC, Credit Suisse, Barclays, Wells Fargo and more. Very useful for a case study. In addition, he also highlighted the advantages of using Blockchain in the banking industry:

  • Transparency
  • Less Labour intensive
  • Disintermediation
  • Tamper-proof
  • Nearly instantaneous

However, there are also some key challenges , as follows:

  • Privacy
  • Integration
  • Threat of Rivalry
  • Energy Consumption

I couldn’t remember who spoke on steps in launching an ICO but the points given were super good. According to him, the steps in doing an ICO are as follows:

  1. Decide if an ICO is suitable for your business
  2. Adviser reach out and on-boarding
  3. Get legal opinion
  4. Create a light paper/whitepaper/deck for your ICO
  5. Private sale or an angel investment to develop the MVP
  6. Create the product
  7. Create a token
  8. Create a community and buzz
  9. Getting your token out on an exchange

He further showed us the shocking statistics that 81% of the ICO projects were found to be a scam scheme. Out of the genuine ICO projects, 6% failed, another 5% gone dead and only a meagre 8% proceed to trade. Therefore the ICO projects are not as rosy as what people claim.

Another speaker spoke on potential blockchain applications. He subdivided the potential applications into four areas, smart contracts, digital currency, securities and record keeping.

The speaker from Cryptology gave advice for those who intend to start an ICO project. First of all, he reminded that blockchain is not a get rich quick scheme. It is about the distribution of trust. Secondly, do not just explore blockchain technology just because it is hot or trendy. Think in terms of how the product or services can benefit from it. Finally, bear in mind that the most successful companies are those who can accept and adapt to constant changes.

Miss Daphne Chong, the CTO from Logistics Worldwide Express and a director of Woman Who Code KL explained how blockchain could disrupts the supply chain and logistics industry. She emphasized on the advantages of implementing blockchain  in supply chain and logistics in terms of

  • Efficiency-less paperwork, elimination of the intermediaries
  • Transparency-price, ownership, location
  • Inventory tracking, quality control
  • Disputes settlement, reduction in cost of regulations and compliance

Last but not least, Mr. Fattah, the chairman of Malaysia’s National Standards Committee on Blockchain and Distributed Ledger Technologies told the audience about the development of Blockchain and DLT standards in Malaysia. He spearheaded the formation of the national committee and played a key role in putting Malaysia on the international scene. You can follow his blog https://fattahyatim.wordpress.com/ to learn more about the subject.

This is all about the conference that I can recollect, I welcome your valuable inputs if I have missed out anything important.

Hyperledger Fabric- A Short Introduction

You have learned about Hyperledger in one of my previous articles. Hyperledger is not a platform but it is an umbrella body that incubates and promotes business blockchain technologies.

The Hyperlegder projects,  which is known as The Hyperledger Greenhouse consists of five projects, as follows:

  • Hyperledger Fabric
  • Hyperledger Sawtooth
  • Hyperledger Burrow
  • Hyperledger Iroha
  • Hyperledger Indy

I shall introduce Hyperledger Fabric in this article.

Hyperlegder Fabric Key Features

Hyperledger Fabric is the first blockchain project developed and hosted by the Linux Foundation.  It was initially contributed by Digital Asset and IBM, as a result of the first hackathon. According to the Linux Foundation , it was Intended as a foundation for developing DLT applications or solutions with a modular architecture.

Hyperledger Fabric is an open-source enterprise-grade permissioned distributed ledger technology (DLT) platform, designed for use in developing enterprise applications. It features some key differentiating capabilities over other popular distributed ledger or blockchain platforms.

One special feature of  Hyperledger Fabric is that it allows components, such as consensus and membership services, to be plug-and-play. Besides that, Hyperledger Fabric uses container technology to host smart contracts called chaincode that comprises the application logic of the system.

Channels are another unique feature of Hyperledger Fabric. They allow transactions to be private between two actors, while still being verified and committed to the blockchain.

Hyperledger Fabric Architecture

Hyperledger Fabric has a highly modular and configurable architecture. Therefore, enterprises can make use of its versatility to develop innovative business applications.  Besides that, it can be used to optimize the applications. Indeed, Hyperledger Fabric is well suited to develop a broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain and even digital music delivery.

Like Ethereum, Hyperledger Fabric also features smart contracts. However, it does not use Solidity as the programming language to code smart contracts. Hyperledger Fabric smart contracts are written in general-purpose programming languages such as Java, Go and Node.js. This means that most enterprises already have the skill set needed to develop smart contracts, therefore no additional training to learn a new language is needed.

Unlike Ethereum and many other public blockchains or DLT platforms, Hyperledger Fabric is a permissioned platform. It means the participants are known to each other, rather than anonymous and fully untrusted. In the Hyperledger Fabric ecosystem, while the participants may not fully trust one another, it can be operated under a governance model that is built with trust exist between participants, such as a legal agreement or framework for handling disputes.

Consensus Protocol

One key difference between Hyperledger Fabric and other DLT platforms is its support for pluggable consensus protocols. It enables the platform to be more effectively customized to fit particular use cases and trust models.

For example, when Hyperledger Fabric is implemented within a single enterprise or operated by a trusted authority, fully Byzantine fault tolerant consensus might be considered unnecessary as it might cause excessive drag on performance and throughput. Instead, a crash fault-tolerant (CFT) consensus protocol is more than adequate. However,  in a multi-party, decentralized platform, a more traditional Byzantine fault tolerant (BFT) consensus protocol might be required.

Another significant difference between Hyperledger Fabric and other DLT platforms is that it can implement consensus protocols that do not require a native cryptocurrency. It means it neither need a cryptocurrency to incentivize costly mining nor to fuel smart contract execution.  The avoidance of a cryptocurrency reduces some significant risk due to hacking via attack vector. Besides that, the absence of cryptographic mining operations means that the platform can be deployed with the same operational cost as other distributed platforms.

The combination of the aforementioned differentiating features makes Hyperledger Fabric one of the better performing DLT platforms available today both in terms of transaction processing and transaction confirmation latency. Besides that,  it enables privacy and confidentiality of transactions and the smart contracts (chaincode) that implement them.

I shall discuss the Hyperledger Fabric architecture and chaincode in more details in another article.

White Paper#1 Creating a Self-Sustaining School Ecosystem

Abstract

The current school system is too structured, rigid, and inhibits creativity. The current school curriculum inadequately prepares the students to survive the fast-changing world of the 21st century. While schools need to comply with the national education policy to teach designated subjects, schools should include other programs that could help to resolve the aforementioned issue. Therefore, our school proposes building an ecosystem using blockchain technology where students can freely create and share their contents. We believe that the blockchain ecosystem will nurture young children in developing creative minds and entrepreneurial skills.

I have written this white paper for a hypothetical blockchain project. This blockchain project is to build a private blockchain ecosystem for an international school. 

First, we need to conduct a feasibility study before we start planning any blockchain project. Here, I am using a methodology called the CATWOE analysis. It can be applied to any new project.

CATWOE Analysis of  Building a Blockchain School

CATWOE is an acronym that stands for Customers – Actors – Transformation process – Worldview – Owners – Environmental constraints. It’s a simple analytical approach to find solutions to problems. The CATWOE Analysis makes it possible to identify problem areas, look at what an organization wants to achieve, and which solutions can influence the stakeholders. The analysis uses thought methodology from multiple perspectives. It is especially useful for an organization that wants to implement a new project that involves a drastic transformation process. The implementation of the blockchain technologies in a school curriculum qualifies for such transformation. Therefore, there is a need to understand the problems and try to find solutions before we proceed with the project implementation

C – Clients

They are the users and stakeholders of a system. In this case, they are the students, teachers, parents, the management staff, the education department, and others. They will benefit if the change is positive and the problems are solved. However, they may stand to lose or suffer if the change is negative and new problems are created. Therefore, we need to find out whether the blockchain technologies can solve current problems and bring positive changes in the school system. If the outcome could be negative or even damaging, we need to abort the project.

A-Actors

They are usually the employees within an organization, in this case, teachers and support staff. They are responsible for carrying out work and involved with the implementation of the blockchain system. Therefore, we need to conduct an inventory analysis to know their qualities, capabilities, and interests to get a clear picture of their impact on the organization. We may need to hire new employees or retrain the current ones to ensure competency with respect to blockchain implementation. We also need to conduct training for the employees.

T – Transformation Process

Transformation is the change that a system or process leads to. It’s the process in which input (including raw materials, man-hours, knowledge) is transformed by an organization into output (such as a final product or solution to a problem).

To implement the blockchain system, we need to know in advance what kinds of input requires and forecast what the end result (output) will be. Besides that,  we have to carefully consider the intermediate steps. In this case, the input is the blockchain technologies and the output could be a system that churns out an intelligent pool of young entrepreneurs that thrive on co-creating and co-sharing.

W – Worldview

Stakeholders often have different ideas and approaches to the same issue, with other conflicting interests. The goal of the CATWOE analysis is to make their different viewpoint explicit and try to achieve a methodology stand. In this project, we need to achieve consensus among the stakeholders that involve the students themselves, we don’t want to force the ideas on them. Besides that, some teachers might have fear in carrying out the transformation as they have to learn new technologies. Parents would be very concern about the implementation of the blockchain technologies because it will bring profound impacts on their children, either positively or negatively.

In addition, the government might want to regulate the project to ensure it complies with the national education policies and philosophies. On the other hand, business leaders may want to look for financial gains by sponsoring the project or they may refuse to support the project at all. Therefore, there is an urgent need to conduct surveys and research to figure out how to secure agreement from most stakeholders to implement the project.

O – Owners

This usually refers to the owner, entrepreneur or investor of an organisation, who wants to make changes and who decides whether a project should start or stop. As decision makers, they have the highest authorities.  Commitment and support from the aforementioned parties are important to ensure successful implementation of the blockchain project and also long term sustainability of the project.

E – Environmental Constraints

This is the actual environmental elements that may influence the organization and can limit or restrict the implementation of the blockchain technologies in the school system. Examples include political influence, ethical boundaries, regulations from the government, financial constraints and social factors. There is a need to work closely to overcome the constraints via negotiations and other means with the regulators and other parties

After conducted the CATWOE analysis, I have identified the following problems where most schools are facing.

Problems

  • The Current school system is too structured and too rigid, inhibiting creativity
  • The Curriculum methodology too centered on academics and examinations
  • Teacher-centered, lack of peer learning
  • The Administration is centralized and autocratic
  • Does not prepare children for the future
  • Lack of participation from stakeholders

The proposed solution

  • Create a self-perpetuating and self-sustaining ecosystem where students can create and share digital content. It can also include tangible things like arts and craft, scientific inventions, or intangible things like music, song, new ideas, games, and so on. These tangible assets can be digitized and shared among the students.
  • Not only they can share digital content, but they can also buy and sell them. It is akin to an autonomous economic system where students can self-fund their projects by trading their digital assets.
  • The latest technology that can power this system is blockchain, a subset of decentralized ledger technologies.
  • The ecosystem should be enlarged to include the actors of the system – the teachers, coaches, supporting staff and the administrators.
  • The ecosystem must also be connected to stakeholders, including the business owners (who can provide financial support and sponsorship), the government (who may want to regulate the activities in the system), parents (who are concerned with their children development), etc.
  • The ecosystem can be extended to include students from around the world in the future.

† The Architecture

  • Create a permissioned private blockchain platform for the students. The students can interact freely in their own close-loop decentralized and distributed ecosystem.
  • Content or assets can be created and tokenized and shared among the students. They can trade their assets using the tokens, creating a token economic system.
  • Develop APIs so that the stakeholders can interact with the blockchain. Administrators and teachers should be allowed to monitor and delete certain contents that are inappropriate like pornographic materials etc via the API. On the other hand, parents can monitor their children progress but may not be allowed to delete the contents or add comments. In addition, business owners and investors can monitor the progress of the project and provide support and advice if necessary (for example if the system crashed or stalled). In addition, regulators might want to monitor the blockchain for compliance.
  • Proposed using Ethereum Proof of Authority(PoA) protocol known as Clique. The benefits of using PoA are as follows:
    • Saves electricity power
    • Eliminates the need to invest into large numbers of ‘Miners’ servers
    • Increase the transaction speed tremendous compared to Proof-of-Work(PoW)
    • Better security since only members can access the network
  • The ecosystem can be hosted on a cloud server like AWS and Microsoft Azure but you can set up your own servers.  The conceptual model is illustrated in the figure below:

The Legal Framework

Obviously transforming a school into a blockchain school needs to obtain approval from the Ministry of Education. It has to comply with national education policies. Therefore, we need to design the blockchain platform as a new approach in teaching and learning, keeping content within the requirements of the curriculum imposed by the MOE.

**You may use my ideas to write a paper if you are embarking on a similar project, but prior consent from me is necessary.